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Abstract. Lattice Boltzmann (LB) methods have been extensively studied for the mesoscopic
modelling of isotropic fluids but little attention has been given to the problem of modelling
anisotropic fluids. In this paper an LB scheme is presented which recovers the equations of the
Ericksen–Leslie–Parodi theory of nemato-dynamics. The scheme introduces a second distribution
which advects with the LB momentum densities and which represents the orientation of an ordered
fluid element. The momentum evolution scheme requires the use of a linearized LB scheme with an
anisotropic scattering matrix and the director evolution is achieved with an LBGK scheme. Results
are presented which are in good agreement with the predictions of a Chapman–Enskog analysis of
the algorithm. The method provides an initial step in the development of mesoscopic algorithms
for modelling the flow of anisotropic fluids.

Over the past decade lattice Boltzmann (LB) methods have been successfully developed as
mesoscopic models of isotropic fluids (e.g. [1–3]). The methods show particular promise in
multi-component systems (e.g. [4, 5]) and flows in complex geometries (e.g. [6]). However,
there are many materials of technological interest which have anisotropic flow properties and
it would clearly be of interest to extend LB methods to represent such fluids. However very
little work has been reported on this problem.

In this paper we consider nematic liquid crystals [7] which are of interest because of their
applications in display devices. Materials which exhibit liquid crystal phases have anisometric
molecules which are often modelled as either oblate or prolate ellipsoids [8]. The nematic
ordering is characterized by an order tensor whose principal eigenvector defines the director,
nα(x, t), a unit vector which essentially defines the ‘average orientation’ of the molecules.

The continuum theory of the fluid dynamics of incompressible nematics was established
by Ericksen, Leslie and Parodi (ELP) (see [7]) and the equations of the ELP theory may be
summarized as follows

∇αvα = 0 (1)
Dvβ

Dt
= ∂ασαβ (2)

hα = γ1Nα + γ2nβAβα (3)

where

Nα = Dnα

Dt
− εαβγ ωβnγ . (4)

The first two equations are the equations of continuity (1) and momentum evolution (2).
Equation (3) may be considered to be an equation controlling the evolution of the director.
In these equations, we have used the repeated index summation convention, D/Dt is the
convective derivative, σαβ is the stress tensor, Aαβ = 1

2

(
∂αvβ + ∂βvα

)
is the symmetric part of

the velocity gradient tensor and ωα = 1
2εαβγ ∂βvγ is the fluid vorticity. The field hα(x, t) is a
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‘molecular field’ which mediates the effects of (i) the Frank elastic energy and (ii) the effect
of any external applied magnetic or electric fields. In this work we adopt the one constant
approximation in which the three Frank elastic constants are assumed to be equal to a single
constant, K , and the molecular field becomes

hα = K∂β∂βnα + γa(H · n)Hα (5)

where Hα is the external magnetic field. The viscous part of the stress tensor for a nematic
may be written in the form

σ ′
αβ = (

α2nαhβ + α3hαnβ

)
/γ1 + α1nαnβnγ nδAγδ + α4Aαβ

(α5 − α2γ2/γ1) nαnγAγβ + (α6 − α3γ2/γ1) nβnγAγα (6)

where

γ1 = α3 − α2 (7)

γ2 = α6 − α5 = α2 + α3 (8)

We now describe an LB algorithm which will recover the macroscopic equations (1)–(3). The
core of an LB algorithm is an evolution equation for the momentum density distributionfi(x, t)

associated with lattice link i at the lattice site x and time step t . The distribution function is a
mesoscopic quantity from which the macroscopic flow fields may be recovered through

ρ(x, t) =
∑
i

fi(x, t) ρ(x, t)uα =
∑
i

ciαfi(x, t) (9)

where the ciα are the velocity vectors associated with the underlying lattice [9, 10].
In order to represent a nematic fluid within a LB scheme it is necessary to introduce a

variable which carries information about the orientational order of the fluid elements within
the system. For simplicity we specialize to a two-dimensional model in which the director
is restricted to lie in the {x, y} plane and associate a scalar θi(x, t) with each lattice link in
addition to the momentum density distributions fi(x, t). The ‘director’ associated with the
fluid density in link direction i is ni = {cos θi, sin θi}. The quantity θi(x, t) is assumed to
advect with the momentum density fi(x, t). The ELP equations are recovered from two LB
schemes, one for the evolution of the momentum densities, fi(x, t), and a second for the
evolution of the orientation, θi(x, t). These two LB algorithms are run in parallel with the
same time increment and on the same underlying lattice. At the end of each propagation step,
the values of the orientation and velocity fields are exchanged.

In the method presented here we essentially represent the order of the fluid through the
introduction of a vector density. This is in contrast to a nemato-dynamics LB scheme recently
reported by Denniston et al [11] which introduces the order of the nematic fluid through a
tensor density. The Denniston scheme is able to model systems with variable order parameter
but does not include the full tensorial coupling of the director and velocity fields achieved by
the method described here.

The anisotropy is introduced into a momentum evolution scheme through an anisotropic
collision process. Thus the momentum densities are assumed to propagate according a
linearized lattice Boltzmann scheme (LLB) [12] of the form

fi(x + δci , t + δ) = fi(x, t) +
∑
j

(!ij − Sij )f
(neq)

j + Fi (10)

where !ij is an anisotropic collision matrix, the matrix Sij is defined below, f (neq)

j = fj −f
(0)
j

is the non-equilibrium component of the momentum density distribution and the ‘forcing’ term,
Fi , is of the form

Fi = tpciβ∂α
(
α2nαhβ + α3hαnβ

)
/(γ1c

2
s ) (11)
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The parameter tp is defined below after equation (16). The perturbation, Fi , recovers the
momentum evolution arising from the first term of the stress tensor given in equation (6). In
order to recover the remaining terms in the stress tensor (6), the matrix !ij is taken to be of
the form

!ij = !
(0)
ij

1 + λ
(0)
j + λ

(2)
j + λ

(4)
j

(12)

where !
(0)
ij is an isotropic collision matrix and

λ
(0)
j = δ0(cjαcjα) λ

(2)
j = δ2(cjαnα)

2 λ
(4)
j = δ4(cjαnα)

4 (13)

The term λ
(0)
j only contributes to the isotropic viscosity, a4. The term λ

(2)
j yields the final two

terms in the stress tensor (6) and the term λ
(4)
j gives the term associated with α1. In order to

recover the terms associated with λ
(2)
j in the correct form it is necessary for the velocity tensors

T (n)
α1α2...αn

=
∑
i

tpciα1 . . . ciαn
(14)

to be isotropic up to 6th order. Here this is achieved through the use of a two-dimensional
lattice with 13 velocity components (D2Q13) based on a three-speed hexagonal lattice with
velocity vectors, cp, given by

c0 = {0, 0}
c1 = c{±1, 0}, c{±1/2,±√

3/2}
c2 = c{0,±√

3}, c{±3/2,±√
3/2} (15)

the subscripts 0, 1 and 2 being associated with particles with velocity 0, c and
√

3c respectively.
The term associated with λ(4) requires isotropy of T (N) to 8th order; this could be achieved by
further enhancement of the velocity set but for simplicity this term is omitted in the current
analysis.

The isotropic equilibrium distribution function, f
(0)
i (ρ,u), for the D2Q13 lattice is

determined by the requirements that it satisfies the moments (9), yields 6th order isotropy
in the velocity tensors and is Galilean invariant. It is found to O(u2) to be of the form

f
(0)
i (ρ,u) = ρtp

(
1 +

1

c2
s

uαciα +
1

2c2
s

uαuβ

(
ciαciβ

c2
s

− δαβ

))
(16)

where t0 = 11/25, t1 = 9/100 and t2 = 1/300 and the velocity of sound cs = (3/10)1/2. The
13 × 13, isotropic scattering matrix !

(0)
ij is chosen to be of the form(

c b d

bT A G

dT G A

)
(17)

where b = {b, b, b, b, b, b}, d = {d, d, d, d, d, d}, and A and G are 6 × 6 circulant matrices
with first rows

{a0, a60, a120, a180, a120, a60} {g30, g30, g90, g150, g150, g90}. (18)

The matrix !
(0)
ij is an extension of that used by Higuera et al [12] for the D2Q7 lattice. !

(0)
ij

has the circulant properties required by symmetry and couples the three velocity sets. The
requirements of conservation of mass and momentum can be satisfied by a wide choice of
matrix elements. We make the following choice in order to recover the required physical
behaviour

b = τ/13 c = −12τ/13 d = τ/13

g30 = τ/13 g90 = τ/13 g150 = τ/13 (19)
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a0 = −(10τ + 13φ)/39 a60 = (6τ + 13φ)/78

a120 = (−20τ + 13φ)/78 a180 = (3τ − 13φ)/39. (20)

With this choice of matrix elements, !(0)
ij has five eigenvectors with eigenvalues 0, four with

eigenvalue −φ and four with eigenvalue −τ .
The matrix Sij in equation (10) is defined by

Sij =
7∑

ν=4

ξ
(ν)
i ξ

(ν)
j (21)

where the summation is over the four eigenvectors, ξ(ν), with zero eigenvalue which are
formed from the velocity vectors cp. The effect of Sij is to remove the contributions of these
eigenvectors from f n

i for all n � 1. For the anisotropic scheme described here it is necessary
to remove these terms in order to recover the required form for the macroscopic stress tensor. It
can be shown from a standard Chapman–Enskog analysis (e.g. [2]) of the momentum evolution
equation (10) that the first-order correction to the equilibrium distribution function is given by

f
(1)
i = (1 + λ

(0)
i + λ

(2)
i + λ

(4)
i )g

(1)
i (22)

where the g
(1)
i are solutions of

tp

c2
s

(
ciαciβ − c2

s δαβ
)
∂α(ρuβ) =

∑
j

!
(0)
ij g

(1)
i . (23)

The g
(1)
i represent first-order corrections to the equilibrium distribution function in the presence

of the isotropic scattering matrix !
(0)
ij and are given by

g
(1)
i = 1

c2
s

∂α(ρuβ)

(
− tp

φ

(
ciαciβ − c2

s δαβ
)

+ (g2ξ
(2)
i + g3ξ

(3)
i )δαβ

)
+

7∑
ν=4

gνξ
(ν)
i (24)

where the coefficients g4 to g7 in g
(1)
i are set to zero by the use of the matrix Sij . Provided

the velocity set has the correct isotropy, the form of f
(1)
i given by equation (22) leads to the

required tensor coupling between the director field and the velocity gradients. Hence, noting
that we have set λ(4)

i = 0, a Chapman–Enskog analysis leads to the following identifications

α4 = −c2
s ρ

(
1 − 2

φ
− 3δ0

φ
− δ2

2φ

)
α5 = c2

s ρδ2

φ
− α2λ α6 = c2

s ρδ2

φ
− α3λ (25)

where λ = −γ2/γ1. Recalling that α2 and α3 are introduced through the Fi given by
equation (11), we have therefore obtained a momentum evolution scheme which gives direct
control over α2, α3, α4 and α5 in the anisotropic stress tensor through the input parameters
α2, α3, δ0, δ2 and φ. In order for the algorithm to be dynamically stable, the parameters
associated with the anisotropic scattering matrix, {δ0, δ2, φ, τ} must be chosen to ensure that
−2 <

∑
ij ξ

ν
i !ij ξ

ν
j < 0 for each eigenvector, ξν , and |∑ij ξ

ν
i !ij ξ

µ

j | < 1 for ν �= µ.
We now consider the evolution of the director whose governing equation, (3), which may

be written in the form

∂tθ + vβ∂βθ = K

γ1
∇2θ + ωz +

γ2

2γ1

[
sin(2θ)(∂xux − ∂yuy) − cos(2θ)(∂xuy + ∂yux)

]
(26)

where ωz = [∇×u]z. The corresponding macroscopic observable, θ(x, t), is defined through
the following choice of an average orientation

θ(x, t) = 1

Ni

Ni∑
i

θi(x, t) (27)
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where Ni is the number of lattice links. The inversion symmetry of the director is introduced
by calculating the order tensor (cf [7]) of the orientation vectors at each site and adjusting all
the angles θi to lie within ±π/2 of the local director before the average in (27) is calculated.
This definition, together with the subsequent definition of the equilibrium distribution function
leads to the correct macroscopic behaviour.

In the spirit of LBGK simulation we evolve θi(x, t) according to:

θi(x + δci , t + δ) = θi(x, t) + ω
(
θ i − θi(x, t)

)
+ A(θ,∇u) − 1

c2
s

ci × u (28)

where

θ i = θ(x, t)fi

ρ(x, t)
K = c2

s γ1

2

(
2

ω
− 1

)
. (29)

The time step for angular evolution is chosen to be identical with that used for the momentum
evolution. The equilibrium distribution, θ i , has been defined in equation (29) to have the
property

∑
i θ i = θ(x, t). This ensures that

∑
i θ

(n)
i = 0 for n � 1, a common requirement in

LBE formalism [2]. The forcing term, A(θ,∇u), is set to be [13]

A(θ,∇u) = tp
γ2

2γ1

[
sin(2θ)(∂xvx − ∂yvy) − cos(2θ)(∂xvy∂yvx)

]
(30)

and this generates all the outstanding terms in the macro-dynamics with an error term
(2τ − 1)εzαβ∂α∂γ vγ vβ which is small in the target creeping flow applications. The effect
of an external magnetic field may be included in the LB director evolution scheme by the
addition of a term of the form

γa

γ1

(
HxHy cos(2θ) +

H 2
y − H 2

x

2
sin(2θ)

)
(31)

to the forcing term equation (30).
The LB scheme described above has been implemented for some simple flow regimes in

order to validate the method. A standard experimental approach is to measure the viscosity
of the liquid crystal in a simple shear field in the presence of strong director aligning fields in
order to determine the Miesowicz viscosities (see e.g. [7, 14]). It is found that the effective
viscosities in a shear flow in which the director is parallel and perpendicular to the flow,
η‖
[= 1

2 (α4 + α6 + α3)
]

and η⊥ = [
1
2 (α4 + α5 − α2)

]
, are given respectively by

η‖ = − α2
3

α2 − α3
+ c2

s ρ

(
−1

2
+

1

φ
+

3δ0

2φ
+

3δ2

4φ

)

η⊥ = − α2
2

α2 − α3
+ c2

s ρ

(
−1

2
+

1

φ
+

3δ0

2φ
+

3δ2

4φ

)
. (32)

Simulation results for these two Miesowicz viscosities are plotted in figure 1 as a function
of |1/φ| for the parameter set {τ = −1, δ0 = 0.06, δ2 = −0.07761, γ1 = 0.04698, γ2 =
−0.04842}. The ratio of the slope to the intercept for each of these two sets of data agrees
with the predicted value to better than 0.02%. For φ = −1.962 this parameter set gives Leslie
coefficients in the same ratio as those of N-(p-methoxybenzylidene)-p-n-butyl-aniline (MBBA)
at 25◦ [15]; α2/α4 = −0.956, α3/α4 = −0.0144, α5/α4 = 0.556 and α6/α4 = −0.413. The
ratio of the two Miesowicz viscosities is found to be 4.383 which is in agreement with the
predicted value to within 0.2%. The method has also been used to replicate the flow of p-
methoxy-p’-butylazoxybenezene and p,p’-dibutylazoxybenzene (DIBAB) over the range of
temperatures reported in [16].
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Figure 1. Simulation results for the Miesowicz viscosities as a function of 1/φ for director
orientations of 0◦ (�) and 90◦ (�). Solid lines from equations (32)
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Figure 2. Simulation results for bulk director orientation in shear flow as a function of −γ2/γ1.
The continuous curve is cos(2θ) = −γ1/γ2.

In figure 2 we show a comparison between the theoretical and simulation results for the
variation in the director orientation in a shear flow. The simulation results have been obtained
using the director evolution scheme given in equation (28). In order to test the director evolution
algorithm we considered the response of the director field to a shear flow for which it is predicted
that far from the walls the director angle is given by

cos(2θ) = −γ1/γ2 (33)

if the director is pinned perpendicular to the walls. This behaviour is correctly recovered as is
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shown in figure 2.
In this letter we have proposed an LB scheme for an nematic fluid and demonstrated that the

algorithm is able to recover the equations of the ELP theory of nemato-dynamics. The scheme
introduces a variable to represent the director field which advects with the LB momentum
densities. The momentum evolution scheme requires the use of a linearized LB scheme with
an anisotropic scattering matrix and the director evolution is achieved with an LBGK scheme.
The momentum evolution equation requires isotropy of the velocity tensors up to 8th order
to recover the full ELP equations. Results have been presented for the scheme which recover
four of the five Leslie coefficients using a velocity set which has 6th order isotropy and using a
particular form of the scattering matrix. The results are in good agreement with the predictions
of the Chapman–Enskog analysis.

Whilst the momentum scheme described here could be generalized straightforwardly to
three dimensions, the angular evolution scheme is specialized for a two-dimensional director
field. The extension of the angular scheme to three dimensions would require a reworking of
the methodology and is currently being developed. In future work it is hoped first to address
the important problem of materials with a spatially varying order parameter.

We thank D Cleaver, A Masters, P Olmsted, L-S Luo, J Yeomans and C Denniston for useful
conversations. The work is part funded by EPSRC grant number GR/L86135.
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